Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Sci Total Environ ; 927: 172113, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580110

RESUMO

Antimony (Sb) and sulfate are two common pollutants in Sb mine drainage and Sb-containing textile wastewater. In this paper, it was found that iron­carbon (Fe/C) enhanced Sb(V) removal from sulfate-rich wastewater by anaerobic granular sludge (AnGS). Sulfate inhibited Sb(V) removal (S + Sb, k = 0.101), while Fe/C alleviated the inhibition and increased Sb(V) removal rate by 2.3 times (Fe/C + S + Sb, k = 0.236). Fe/C could promote the removal of Sb(III), and Sb(III) content decreased significantly after 8 h. Meanwhile, Fe/C enhanced the removal of sulfate. The 3D-EEM spectrum of supernatant in Fe/C + S + Sb group (at 24 h) showed that Fe/C stimulated the production of soluble microbial products (SMP) in wastewater. SMP alleviated the inhibition of sulfate, promoting AnGS to reduce Sb(V). Sb(V) could be reduced to Sb(III) both by AnGS and sulfides produced from sulfate reduction. Further analysis of extracellular polymeric substances (EPS) and AnGS showed that Fe/C increased the adsorbed Sb(V) in EPS and the c-type cytochrome content in AnGS, which may be beneficial for Sb(V) removal. Sb(V) reduction in Fe/C + S + Sb group may be related to the genus Acinetobacter, while in Sb group, several bacteria may be involved in Sb(V) reduction, such as Acinetobacter, Pseudomonas and Corynebacterium. This study provided insights into Fe/C-enhanced Sb(V) removal from sulfate-rich wastewater.


Assuntos
Antimônio , Ferro , Esgotos , Sulfatos , Eliminação de Resíduos Líquidos , Águas Residuárias , Poluentes Químicos da Água , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Poluentes Químicos da Água/análise , Antimônio/análise , Anaerobiose , Carbono
2.
Nanomicro Lett ; 16(1): 116, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38358567

RESUMO

Free-standing covalent organic framework (COFs) nanofilms exhibit a remarkable ability to rapidly intercalate/de-intercalate Li+ in lithium-ion batteries, while simultaneously exposing affluent active sites in supercapacitors. The development of these nanofilms offers a promising solution to address the persistent challenge of imbalanced charge storage kinetics between battery-type anode and capacitor-type cathode in lithium-ion capacitors (LICs). Herein, for the first time, custom-made COFBTMB-TP and COFTAPB-BPY nanofilms are synthesized as the anode and cathode, respectively, for an all-COF nanofilm-structured LIC. The COFBTMB-TP nanofilm with strong electronegative-CF3 groups enables tuning the partial electron cloud density for Li+ migration to ensure the rapid anode kinetic process. The thickness-regulated cathodic COFTAPB-BPY nanofilm can fit the anodic COF nanofilm in the capacity. Due to the aligned 1D channel, 2D aromatic skeleton and accessible active sites of COF nanofilms, the whole COFTAPB-BPY//COFBTMB-TP LIC demonstrates a high energy density of 318 mWh cm-3 at a high-power density of 6 W cm-3, excellent rate capability, good cycle stability with the capacity retention rate of 77% after 5000-cycle. The COFTAPB-BPY//COFBTMB-TP LIC represents a new benchmark for currently reported film-type LICs and even film-type supercapacitors. After being comprehensively explored via ex situ XPS, 7Li solid-state NMR analyses, and DFT calculation, it is found that the COFBTMB-TP nanofilm facilitates the reversible conversion of semi-ionic to ionic C-F bonds during lithium storage. COFBTMB-TP exhibits a strong interaction with Li+ due to the C-F, C=O, and C-N bonds, facilitating Li+ desolation and absorption from the electrolyte. This work addresses the challenge of imbalanced charge storage kinetics and capacity between the anode and cathode and also pave the way for future miniaturized and wearable LIC devices.

3.
J Environ Manage ; 354: 120486, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38417363

RESUMO

Alterations in water regimes or nitrogen (N) availability lead to shifts in the assemblage of rhizosphere microbial community; however, how the rhizosphere microbiome response to concurrent changes in water and N availability remains largely unclear. Herein, we investigated the taxonomic and functional characteristics of rhizobacteria associated with stevia (Stevia rebaudiana Bertoni) under varying combinations of water and N levels. Community diversity and predicted functions of rhizobacteria were predominantly altered by drought stress, with N-starvation modulating these effects. Moreover, N fertilization simplified the ecological interactions within rhizobacterial communities and heightened the relative role of stochastic processes on community assembly. In terms of rhizobacterial composition, we observed both common and distinctive changes in drought-responsive bacterial taxa under different N conditions. Generally, the relative abundance of Proteobacteria and Bacteroidetes phyla were depleted by drought stress but the Actinobacteria phylum showed increases. The rhizobacterial responses to drought stress were influenced by N availability, where the positive response of δ-proteobacteria and the negative response of α- and γ-proteobacteria, along with Bacteroidetes, were further heightened under N starvation. By contrast, under N fertilization conditions, an amplified negative or positive response to drought were demonstrated in Firmicutes and Actinobacteria phyla, respectively. Further, the drought-responsive rhizobacteria were mostly phylogenetically similar, but this pattern was modulated under N-rich conditions. Overall, our findings indicate an N-dependent specific restructuring of rhizosphere bacteria under drought stress. These changes in the rhizosphere microbiome could contribute to enhancing plant stress tolerance.


Assuntos
Actinobacteria , Stevia , Secas , Bactérias , Proteobactérias , Rizosfera , Água , Microbiologia do Solo
4.
J Magn Reson Imaging ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38390981

RESUMO

BACKGROUND: Different placenta accreta spectrum (PAS) subtypes pose varying surgical risks to the parturient. Machine learning model has the potential to diagnose PAS disorder. PURPOSE: To develop a cascaded deep semantic-radiomic-clinical (DRC) model for diagnosing PAS and its subtypes based on T2-weighted MRI. STUDY TYPE: Retrospective. POPULATION: 361 pregnant women (mean age: 33.10 ± 4.37 years), suspected of PAS, divided into segment training cohort (N = 40), internal training cohort (N = 139), internal testing cohort (N = 60), and external testing cohort (N = 122). FIELD STRENGTH/SEQUENCE: Coronal T2-weighted sequence at 1.5 T and 3.0 T. ASSESSMENT: Clinical characteristics such as history of uterine surgery and the presence of placenta previa, complete placenta previa and dangerous placenta previa were extracted from clinical records. The DRC model (incorporating radiomics, deep semantic features, and clinical characteristics), a cumulative radiological score method performed by radiologists, and other models (including a radiomics and clinical, the clinical, radiomics and deep learning models) were developed for PAS disorder diagnosing (existence of PAS and its subtypes). STATISTICAL TESTS: AUC, ACC, Student's t-test, the Mann-Whitney U test, chi-squared test, dice coefficient, intraclass correlation coefficients, least absolute shrinkage and selection operator regression, receiver operating characteristic curve, calibration curve with the Hosmer-Lemeshow test, decision curve analysis, DeLong test, and McNemar test. P < 0.05 indicated a significant difference. RESULTS: In PAS diagnosis, the DRC-1 outperformed than other models (AUC = 0.850 and 0.841 in internal and external testing cohorts, respectively). In PAS subtype classification (abnormal adherent placenta and abnormal invasive placenta), DRC-2 model performed similarly with radiologists (P = 0.773 and 0.579 in the internal testing cohort and P = 0.429 and 0.874 in the external testing cohort, respectively). DATA CONCLUSION: The DRC model offers efficiency and high diagnostic sensitivity in diagnosis, aiding in surgical planning. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

5.
Bioresour Technol ; 395: 130378, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38281546

RESUMO

A novel manganese cobalt metal-organic framework based carbon nanofiber electrode (MnCo/CNF) was prepared and used as microbial fuel cell (MFC) anode. Pyrite was introduced into the anode chamber (MnCoPy_MFC). Synergistic function between pyrite and MnCo/CNF facilitated the pollutants removal and energy generation in MnCoPy_MFC. MnCoPy_MFC showed the highest chemical oxygen demand removal efficiency (82 ± 1%) and the highest coulombic efficiency (35 ± 1%). MnCoPy_MFC achieved both efficient electricity generation (maximum voltage: 658 mV; maximum power density: 3.2 W/m3) and total antimony (Sb) removal efficiency (99%). The application of MnCo/CNF significantly enhanced the biocatalytic efficiency of MnCoPy_MFC, attributed to its large surface area and abundant porous structure that provided ample attachment sites for electroactive microorganisms. This study revealed the synergistic interaction between pyrite and MnCo/CNF anode, which provided a new strategy for the application of composite anode MFC in heavy metal removal and energy recovery.


Assuntos
Fontes de Energia Bioelétrica , Ferro , Nanofibras , Compostos de Nitrosoureia , Sulfetos , Carbono , Manganês , Antimônio , Cobalto , Fontes de Energia Bioelétrica/microbiologia , Eletricidade , Eletrodos , Bactérias/química
6.
ACS Nano ; 18(4): 3260-3275, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38227975

RESUMO

The ischemic stroke is a major global health concern, with high mortality and disability rates. Unfortunately, there is a dearth of effective clinical interventions for managing poststroke neuroinflammation and blood-brain barrier (BBB) disruption that are crucial for the brain injury evolving and neurological deficits. By leveraging the pathological progression of an ischemic stroke, we developed an M2 microglia-targeting lipid nanoparticle (termed MLNP) approach that can selectively deliver mRNA encoding phenotype-switching interleukin-10 (mIL-10) to the ischemic brain, creating a beneficial feedback loop that drives microglial polarization toward the protective M2 phenotypes and augments the homing of mIL-10-loaded MLNPs (mIL-10@MLNPs) to ischemic regions. In a transient middle cerebral artery occlusion (MCAO) mouse model of an ischemic stroke, our findings demonstrate that intravenously injected mIL-10@MLNPs induce IL-10 production and enhance the M2 polarization of microglia. The resulting positive loop reinforces the resolution of neuroinflammation, restores the impaired BBB, and prevents neuronal apoptosis after stroke. Using a permanent distal MCAO mouse model of an ischemic stroke, the neuroprotective effects of mIL-10@MLNPs have been further validated by the attenuation of the sensorimotor and cognitive neurological deficits. Furthermore, the developed mRNA-based targeted therapy has great potential to extend the therapeutic time window at least up to 72 h poststroke. This study depicts a simple and versatile LNP platform for selective delivery of mRNA therapeutics to cerebral lesions, showcasing a promising approach for addressing an ischemic stroke and associated brain conditions.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Camundongos , Animais , Microglia/patologia , Microglia/fisiologia , Barreira Hematoencefálica/patologia , Isquemia Encefálica/tratamento farmacológico , Doenças Neuroinflamatórias , Acidente Vascular Cerebral/tratamento farmacológico , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia
7.
FASEB J ; 38(2): e23406, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38193601

RESUMO

Cancer-associated fibroblast (CAF) has emerged as a key contributor to the remodeling of tumor microenvironment through the expression and secretion of extracellular matrix (ECM) proteins, thereby promoting carcinogenesis. However, the precise contribution of ECM proteins from CAFs to gastric carcinogenesis remains poorly understood. In this study, we find that matrilin-3 (MATN3), an upregulated ECM protein associated with poorer prognosis in gastric cancer patients, originates from CAFs in gastric cancer tissues. Ectopic expression of MATN3 in CAFs significantly promotes the invasion of gastric cancer cells, which can be attenuated by neutralizing MATN3 with its antibody. Notably, a portion of MATN3 protein is found to form puncta in gastric cancer tissues ECM. MATN3 undergoes phase separation, which is mediated by its low complexity (LC) and coiled-coil (CC) domains. Moreover, overexpression of MATN3 deleted with either LC or CC in CAFs is unable to promote the invasion of gastric cancer cells, suggesting that LC or CC domain is required for the effect of CAF-secreted MATN3 in gastric cancer cell invasion. Additionally, orthotopic co-injection of gastric cancer cells and CAFs expressing MATN3, but not its ΔLC and ΔCC mutants, leads to enhanced gastric cancer cell invasion in mouse models. Collectively, our works suggest that MATN3 is secreted by CAFs and undergoes phase separation, which promotes gastric cancer invasion.


Assuntos
Fibroblastos Associados a Câncer , Proteínas Matrilinas , Neoplasias Gástricas , Animais , Humanos , Camundongos , Carcinogênese , Proteínas Matrilinas/genética , Invasividade Neoplásica , 60422 , Neoplasias Gástricas/genética , Microambiente Tumoral
8.
Ecotoxicol Environ Saf ; 271: 115957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219617

RESUMO

The perennial ryegrass Lolium perenne can be used in conjunction with cadmium (Cd)-tolerant bacteria such as Cdq4-2 (Enterococcus spp.) for bioremediation of Cd-contaminated soil. In this study, a theoretical basis was provided to increase the efficiency of L. perenne remediation of Cd-contaminated soil using microorganisms to maintain the stability of the soil microbiome. The experimental design involved three treatment groups: CK (soil without Cd addition) as the control, 20 mg·kg-1 Cd-contaminated soil, and 20 mg·kg-1 Cd-contaminated soil + Cdq4-2, all planted with L. perenne. The soil was collected on day 60 to determine the soil microbial activity and bacterial community structure and to analyze the correlation between soil variables, the bacterial community, available Cd content in the soil, Cd accumulation, and L. perenne growth. The soil microbial activity and bacterial community diversity decreased under Cd stress, and the soil microbial community composition was changed; while inoculation with Cdq4-2 significantly increased soil basal respiration and the activities of urease, invertase, and fluorescein diacetate (FDA) hydrolase by 83.65%, 79.72%, 19.88%, and 96.15% respectively; and the stability of the community structure was also enhanced. The Actinobacteriota biomass, the amount of available Cd, and the above- and belowground Cd content of L. perenne were significantly negatively correlated with the total phosphorus, total potassium, and pH. The activity of urease, invertase, and FDA hydrolase were significantly positively correlated with the biomasses of Acidobacteriota and L. perenne and significantly negatively correlated with the Chloroflexi biomass. Further, the available soil Cd content and the above- and belowground Cd levels of L. perenne were significantly positively correlated with the Actinobacteriota biomass and significantly negatively correlated with the Gemmatimonadetes biomass. Overall, inoculating Cd-tolerant bacteria improved the microbial activity, diversity, and abundance, and changed the microbial community composition, facilitating the remediation of Cd-contaminated soil by L. perenne.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/toxicidade , Cádmio/análise , Biodegradação Ambiental , Urease , beta-Frutofuranosidase , Bactérias , Solo/química , Poluentes do Solo/toxicidade , Poluentes do Solo/análise
9.
Tissue Eng Regen Med ; 21(1): 123-135, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37755664

RESUMO

BACKGROUND: Oral submucous fibrosis (OSF) is a chronic disease with carcinogenic tendency that poses a non-negligible threat to human health. Exosomes derived from human adipose mesenchymal stem cells (ADSC-Exo) reduces visceral and cutaneous fibroses, but their role in OSF has received little attention. The aim of this study was to investigate the effects of ADSC-Exo on OSF and elucidate the mechanism. METHODS: In brief, ADSCs were extracted from adipose tissues and subjected to flow cytometry and induction culture. Fibroblasts were isolated from human buccal mucosa and subjected to immunofluorescence. Myofibroblasts were obtained from fibroblasts induced by arecoline and identified. Immunofluorescence assay confirmed that myofibroblasts could take up ADSC-Exo. The effects of ADSC-Exo on the proliferative and migratory capacities of myofibroblasts were examined using the Cell Counting Kit-8 and scratch assay. Real-time quantitative polymerase chain reaction (qPCR) was performed to evaluate mothers against decapentaplegic homolog 2 (Smad2), Smad3, Smad7, collagen type 1 (Col1), Col3, alpha smooth muscle actin (α-SMA), fibronectin, and vimentin. Western blotting was performed to detect phospho (p)-Smad2, Smad2, p-Smad2/3, Smad2/3, Smad7, Col1, Col3, α-SMA, fibronectin, and vimentin. Furthermore, the dual-luciferase reporter assay was performed to prove that miR-181a-5p in ADSC-Exo directly inhibited the expression of Smad2 mRNA to regulate the transforming growth factor beta (TGF-ß) pathway. We also performed qPCR and western blotting to verify the results. RESULTS: ADSC-Exo could promote the proliferation and migration of myofibroblasts, reduce the expressions of p-smad2, Smad2, p-smad2/3, Smad2/3, Col1, αSMA, fibronectin, and vimentin and elevated the levels of Smad7 and Col3. In addition, miR-181a-5p was highly expressed in ADSC-Exo and bound to the 3'-untranslated region of Smad2. ADSC-Exo enriched with miR-181a-5p reduced collagen production in myofibroblasts and modulated the TGF-ß pathway. CONCLUSIONS: ADSC-Exo promoted the proliferative and migratory capacities of myofibroblasts and inhibited collagen deposition and trans-differentiation of myofibroblasts in vitro. miR-181a-5p in exosomes targets Smad2 to regulate the TGF-ß pathway in myofibroblasts. ADSC-Exo perform antifibrotic actions through the miR-181a-5p/Smad2 axis and may be a promising clinical treatment for OSF.


Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Fibrose Oral Submucosa , Humanos , Colágeno Tipo I/metabolismo , Exossomos/metabolismo , Fibronectinas/metabolismo , Fibrose , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fibrose Oral Submucosa/genética , Fibrose Oral Submucosa/terapia , Fibrose Oral Submucosa/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Vimentina/metabolismo
10.
PLoS One ; 18(12): e0295592, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38064475

RESUMO

O-coumaric acid (OCA), as a significant phenolic allelochemical found in hairy vetch (Vicia villosa Roth.), that can hinder the growth of alfalfa (Medicago sativa L.), particularly the growth of alfalfa roots. Nonetheless, the mechanism by which OCA inhibits alfalfa root growth remains unclear. In this study, a liquid chromatography tandem mass spectrometry (LC-MS/MS)-based quantitative proteomics analysis was carried out to identify differentially accumulated proteins (DAPs) under OCA treatment. The findings indicated that 680 proteins were DAPs in comparison to the control group. Of those, 333 proteins were up-regulated while 347 proteins were down-regulated. The enrichment analysis unveiled the significance of these DAPs in multiple biological and molecular processes, particularly in ribosome, phenylpropanoid biosynthesis, glutathione metabolism, glycolysis/gluconeogenesis and flavonoid biosynthesis. The majority of DAPs reside in the cytoplasm (36.62%), nucleus (20.59%) and extracellular space (14.12%). In addition, phenylalanine deaminase was identified as a potential chemical-induced regulation target associated with plant lignin formation. DAPs were mainly enriched in flavonoid biosynthesis pathways, which were related to plant root size. Using the UPLC-ESI-MS/MS technique and database, a total of 87 flavonoid metabolites were discovered. The metabolites were predominantly enriched for biosynthesizing naringenin chalcone, which was linked to plant lignin formation, aligning with the enrichment outcomes of DAPs. Consequently, it was deduced that OCA impacted the structure of cell walls by mediating the synthesis of lignin in alfalfa roots, subsequently inducing wilt. Furthermore, a range of proteins have been identified as potential candidates for the breeding of alfalfa strains with enhanced stress tolerance.


Assuntos
Medicago sativa , Espectrometria de Massas em Tandem , Medicago sativa/metabolismo , Lignina/metabolismo , Ácidos Cumáricos/metabolismo , Proteômica/métodos , Cromatografia Líquida , Melhoramento Vegetal , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas
11.
Dalton Trans ; 53(1): 223-232, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38037684

RESUMO

A large-area COFTAPB-BPY film with a pore size of 3.9 nm was prepared on a gas-liquid interface by the virtue of the limiting and guiding functions of sodium dodecylbenzene sulfonate, followed by modification by Ni2+ ions with the reversible redox reaction of Ni(II/III), where Ni2+ was evidently anchored on the N in BPY. The obtained COFTAPB-BPY and Ni-COFTAPB-BPY nanofilms could avoid the inevitable aggregation and stacking of bulk COFTAPB-BPY, which facilitated a high specific capacitance of 0.26 mF cm-2 for the COFTAPB-BPY nanofilm and 0.38 mF cm-2 for the Ni-COFTAPB-BPY nanofilm at 0.001 mA cm-2. Considering the pseudocapacitance and double-layer capacitance traits of Ni-COFTAPB-BPY and COFTAPB-BPY nanofilms, the asymmetric Ni-COFTAPB-BPY//COFTAPB-BPY film supercapacitor was assembled with a symmetric COFTAPB-BPY//COFTAPB-BPY film device as a control. The asymmetric Ni-COFTAPB-BPY//COFTAPB-BPY film supercapacitor could enhance the energy density of 273.9 mW h cm-3 at 14.09 W cm-3 from 85.2 mW h cm-3 at 4.38 W cm-3 for the symmetric COFTAPB-BPY//COFTAPB-BPY film device. This work provides a new perspective on the application of self-supporting COF nanofilms as film asymmetric supercapacitors.

12.
J Hepatocell Carcinoma ; 10: 2073-2082, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38022730

RESUMO

Background: The CRAFITY (C-reactive protein and alpha-fetoprotein in immunotherapy) score has demonstrated prognostic significance in hepatocellular carcinoma (HCC) patients undergoing immunotherapy. The study aimed to validate accuracy of CRAFITY score on predicting prognosis for patients with HCC treated with transarterial chemoembolization (TACE) combined with PD-(L)1 inhibitors and molecular targeted therapy. Methods: Eighty-five HCC patients who underwent TACE in combination with molecular targeted therapy (MTT) and PD-(L)1 Inhibitors were consecutively enrolled from November 2019 to November 2022. Patients were divided into CRAFITY 0 score (n=32), CRAFITY 1 score (n=31), and CRAFITY 2 score (n=22), respectively. The primary outcomes were overall survival (OS) and progression-free survival (PFS), and the secondary outcomes included tumor response rate and treatment-related adverse events (TRAEs). Factors affecting survival were identified via Cox regression analysis. Results: The median overall survival (OS) for HCC patients with CRAFITY scores of 0, 1, and 2 was 33.4 months (95% confidence interval [CI]: 27.1-39.7), 34.5 months (95% CI: 23.1-45.9), and 24.2 months (95% CI: 13.9-39.3), respectively, there were statistical differences among the three groups (p<0.05). The progression-free survival (PFS) was 14.1 months (95% CI: 10.0-18.2), 14.1 months (95% CI: 9.0-19.2), and 9.3 months (95% CI: 7.2-11.4) for patients with CRAFITY scores of 1, 2, and 3, respectively, with a significant difference between the three groups (p<0.05). In patients with CRAFITY scores of 1, 2, and 3, the disease control rates (DCR) were 94%, 84%, and 73%, respectively (p < 0.05), while the overall response rates (ORR) were 78.1%, 67.7%, and 59.1%, respectively (p = 0.318). A higher CRAFITY score showed a correlation with an increased frequency of fatigue and grade 3 fever (p<0.05). Moreover, CRAFITY 2 score was an independent risk factor for both OS (HR = 2.610(1.281-4.564), p = 0.014) and PFS (HR = 2.419(1.281-4.564), p = 0.006). Conclusion: The CRAFITY score may provide an efficient predictive capacity for prognosis in HCC patients undergoing TACE combined with PD-(L)1 inhibitors and molecular targeted therapy.

13.
ACS Nano ; 17(18): 17721-17739, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37669404

RESUMO

Atherosclerosis is a common pathology present in many cardiovascular diseases. Although the current therapies (including statins and inhibitors of the serine protease PCSK9) can effectively reduce low-density lipoprotein (LDL) cholesterol levels to guideline-recommended levels, major adverse cardiovascular events still occur frequently. Indeed, the subendothelial retention of lipoproteins in the artery wall triggers multiple events of inflammation in macrophages and is a major contributor to the pathological progression of atherosclerosis. It has been gradually recognized that modulating inflammation is, therefore, an attractive avenue to forestall and treat atherosclerosis and its complications. Unfortunately, challenges with specificity and efficacy in managing plaque inflammation have hindered progress in atherosclerosis treatment. Herein, we report an NP-mediated mRNA therapeutic approach to target atherosclerotic lesional macrophages, modulating inflammation in advanced atherosclerotic lesions for the treatment of atherosclerosis. We demonstrated that the targeted NPs containing IL-10 mRNA colocalized with M2-like macrophages and induced IL-10 production in atherosclerotic plaques following intravenous administration to Western diet (WD)-fed Ldlr-/- mice. Additionally, the lesions showed a significantly alleviated inflammatory response, as evidenced by reduced oxidative stress and macrophage apoptosis, resulting in decreased lipid deposition, diminished necrotic areas, and increased fiber cap thickness. These results demonstrate the successful delivery of mRNA therapeutics to macrophage-enriched plaques in a preclinical model of advanced atherosclerosis, showing that this targeted NP inflammation management approach has great potential for translation into a wide range of clinical applications.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Camundongos , Placa Aterosclerótica/tratamento farmacológico , Pró-Proteína Convertase 9 , Interleucina-10 , Aterosclerose/tratamento farmacológico , Inflamação
14.
Sensors (Basel) ; 23(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37571514

RESUMO

The diagnosis of bearing faults is an important guarantee for the healthy operation of mechanical equipment. Due to the time-varying working conditions of mechanical equipment, it is necessary to achieve bearing fault diagnosis under time-varying working conditions. However, the superposition of the two-dimensional working conditions of speed and acceleration brings great difficulties to diagnosis via data-driven models. The long short-term memory (LSTM) model based on the infinitesimal method is an effective method to solve this problem, but its performance still has certain limitations. On this basis, this article proposes a model for fault diagnosis under time-varying operating conditions that combines a residual network model (ResNet) and a gate recurrent unit (model) (GRU). Firstly, the samples were segmented, and feature extraction was performed using ResNet. We then used GRU to process the information. Finally, the classification results were output through the output network. This model could ignore the influence of acceleration and achieve high fault diagnosis accuracy under time-varying working conditions. In addition, we used t-SNE to reduce the dimensionality of the features and analyzed the role of each layer in the model. Experiments showed that this method had a better performance compared with existing bearing fault diagnosis methods.

15.
Front Public Health ; 11: 1198780, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37397762

RESUMO

Background: Short videos on social media are playing an increasingly important role in cancer health education today. It is important to explore how the actual communication effect of health videos and the knowledge absorption of users are influenced by different factors of the video creation process. Objective: The objective of our study is to access the factors influencing breast cancer health education through short videos on efficiency and quality. Methods: Three pairs of videos about breast health were created and participants completed questionnaires before and after watching the videos. A paired t-test was used to analyze within-group change scores. RM-ANOVA was used to assess the relationship between the pretest, posttest, and three variables. Results: Watching short videos can significantly increase viewers' knowledge of related health topics (p < 0.05). The viewers' concentration level while watching was significantly higher for the video with background music (BGM) than for the video without BGM (p = 0.006). The viewers' willingness to share was significantly higher for the video with a progress bar than for the video without a progress bar (p = 0.02). Using an interpreter wearing a doctor's uniform instead of casual wear and setting a progress bar can significantly improve the efficiency of knowledge absorption (p < 0.05). Conclusion: A uniformed interpreter, BGM and a progress bar are factors influencing the efficiency of short health videos. They can be applied in video making to explore better ways of promoting cancer health education in the new mobile Internet environment.


Assuntos
Neoplasias da Mama , Mídias Sociais , Feminino , Humanos , Atitude , Grupos Controle , Alfabetização
16.
Nat Commun ; 14(1): 4223, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454146

RESUMO

Synergistically improving T-cell responsiveness is promising for favorable therapeutic outcomes in immunologically cold tumors, yet current treatments often fail to induce a cascade of cancer-immunity cycle for effective antitumor immunity. Gasdermin-mediated pyroptosis is a newly discovered mechanism in cancer immunotherapy; however, cleavage in the N terminus is required to activate pyroptosis. Here, we report a single-agent mRNA nanomedicine-based strategy that utilizes mRNA lipid nanoparticles (LNPs) encoding only the N-terminus of gasdermin to trigger pyroptosis, eliciting robust antitumor immunity. In multiple female mouse models, we show that pyroptosis-triggering mRNA/LNPs turn cold tumors into hot ones and create a positive feedback loop to promote antitumor immunity. Additionally, mRNA/LNP-induced pyroptosis sensitizes tumors to anti-PD-1 immunotherapy, facilitating tumor growth inhibition. Antitumor activity extends beyond the treated lesions and suppresses the growth of distant tumors. We implement a strategy for inducing potent antitumor immunity, enhancing immunotherapy responses in immunologically cold tumors.


Assuntos
Neoplasias , Piroptose , Animais , Camundongos , Feminino , Gasderminas , Imunoterapia , Microambiente Tumoral
17.
Materials (Basel) ; 16(13)2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37444918

RESUMO

Foamed lightweight soil (FLS) is a lightweight cementitious material containing a large number of tiny closed pores and has been widely used as a filler in places such as railways, roads and airports. However, there has been little research into the resistance of FLS to sulphate attack in practical engineering applications. The performance of FLS against different sulphate erosion concentrations was studied to elucidate the engineering characteristics of using large volumes of FLS as fill material for the road base in the construction of intelligent networked vehicle test sites. The results showed that the compressive strength of FLS prepared using 30% Portland cement (C), 30% granulated blast furnace slag (GBFS), 40% fly ash (FA) and a small amount of a concrete antiseptic agent (CA) as cementitious materials reached 0.8 and 1.9 MPa at 7 and 28 d, respectively, when the wet density was about 600 kg/m3, which met the design requirements. The FLS prepared via the above-mentioned cementitious system had a low carbon emission, with a CO2 emission reduction rate of up to 70%. It also had excellent sulphate attack resistance: the corrosion resistance coefficient of the cementitious material system reached 0.97, which was considerably better than that of C (0.83). For an erosion medium environment with SO42- concentrations of less than 1000 mg/L (moderate), 40% GBFS or FA can be used to prepare FLS. When the concentration of SO42- is less than 4000 mg/L (severe), 30% C, 30% GBFS and 40% FA can be used as cementitious materials, preferably in combination with an appropriate amount of CA, to prepare FLS.

18.
Entropy (Basel) ; 25(7)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37510011

RESUMO

In machine learning and data analysis, dimensionality reduction and high-dimensional data visualization can be accomplished by manifold learning using a t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm. We significantly improve this manifold learning scheme by introducing a preprocessing strategy for the t-SNE algorithm. In our preprocessing, we exploit Laplacian eigenmaps to reduce the high-dimensional data first, which can aggregate each data cluster and reduce the Kullback-Leibler divergence (KLD) remarkably. Moreover, the k-nearest-neighbor (KNN) algorithm is also involved in our preprocessing to enhance the visualization performance and reduce the computation and space complexity. We compare the performance of our strategy with that of the standard t-SNE on the MNIST dataset. The experiment results show that our strategy exhibits a stronger ability to separate different clusters as well as keep data of the same kind much closer to each other. Moreover, the KLD can be reduced by about 30% at the cost of increasing the complexity in terms of runtime by only 1-2%.

19.
Environ Sci Pollut Res Int ; 30(40): 92495-92506, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37491487

RESUMO

Reverse osmosis (RO) alone has low water recovery efficiency because of membrane fouling and limited operating pressure. In this study, a combined reverse osmosis-forward osmosis (RO-FO) process was used for the first time to improve the water recovery efficiency of secondary effluent in printing and dyeing wastewater. The effects of operating pressure and pH on water recovery and removal efficiency of RO-FO were investigated. The results showed that the optimum conditions were an operating pressure of 1.5 MPa and a feed solution pH of 9.0. Under optimal operating conditions, most of the organic and inorganic substances in the wastewater can be removed, and the rejection of total organic carbon (TOC), Sb, Ca, and K were 98.7, 99.3, 97.0, and 92.7%, respectively. Fluorescence excitation-emission matrices coupled with parallel factor (EEM-PARAFAC) analysis indicated that two components (tryptophan and tyrosine) in the influent were effectively rejected by the hybrid process. The maximum water recovery (Rw, max) could reach 95%, which was higher than the current single RO process (75%). This research provided a feasible strategy to effectively recover water from printing and dyeing wastewater.


Assuntos
Águas Residuárias , Purificação da Água , Água , Corantes , Osmose , Purificação da Água/métodos , Membranas Artificiais , Impressão Tridimensional
20.
ACS Nano ; 17(15): 14852-14870, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37490628

RESUMO

Chronic liver injury and inflammation triggered by metabolic abnormalities initiate the activation of hepatic stellate cells (HSCs), driving fibrosis and parenchymal dysfunction, culminating in disorders such as nonalcoholic steatohepatitis (NASH). Unfortunately, there are currently no approved drugs capable of effectively treating NASH due to the challenges in addressing fibrosis and restoring extracellular matrix (ECM) homeostasis. We discovered a significant up-regulation of interleukin-11 (IL-11) in fibrotic livers using two well-established murine models of NASH. To leverage this signaling pathway, we developed a nanoparticle (NP)-assisted RNA interfering approach that specifically targets activated HSCs (aHSCs), blocking IL-11/ERK signaling to regulate HSC transdifferentiation along with fibrotic remodeling. The most potent NP, designated NP-AEAA, showed enhanced accumulation in fibrotic livers with NASH and was primarily enriched in aHSCs. We further investigated the therapeutic efficacy of aHSC-targeting NP-AEAA encapsulating small interfering RNA (siRNA) against IL11 or its cognate receptor IL11ra1 (termed siIL11@NP-AEAA or siIL11ra1@NP-AEAA, respectively) for resolving fibrosis and NASH. Our results demonstrate that both siIL11@NP-AEAA and siIL11ra1@NP-AEAA effectively inhibit HSC activation and resolve fibrosis and inflammation in two well-established murine models of NASH. Notably, siIL11ra1@NP-AEAA exhibits a superior therapeutic effect over siIL11@NP-AEAA, in terms of reducing liver steatosis and fibrosis as well as recovering liver function. These results constitute a targeted nanoparticulate siRNA therapeutic approach against the IL-11 signaling pathway of aHSCs in the fibrotic liver, offering a promising therapeutic intervention for NASH and other diseases.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Células Estreladas do Fígado/metabolismo , Interleucina-11/metabolismo , Interleucina-11/farmacologia , Interleucina-11/uso terapêutico , Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Fibrose , Inflamação/patologia , RNA Interferente Pequeno/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...